Abstract

Human encroachment into wildlands has resulted in a rapid increase in wildland–urban interface (WUI) expansion, exposing more buildings and population to wildfire risks. More frequent mapping of structures and WUIs at a finer spatial resolution is needed for WUI characterization and hazard assessment. However, most approaches rely on high-resolution commercial satellite data with a particular focus on urban areas. We developed a deep learning framework tailored for building footprint detection in the transitional wildland–urban areas. We leveraged meter scale aerial imageries publicly available from the National Agriculture Imagery Program (NAIP) every 2 years. Our approach integrated Mobile-UNet and generative adversarial network. The deep learning models trained over three counties in California performed well in detecting building footprints across diverse landscapes, with an F1 score of 0.62, 0.67, and 0.75 in the interface WUI, intermix WUI, and rural regions, respectively. The bi-annual mapping captured both housing expansion and wildfire-caused building damages. The 30 m WUI maps generated from these finer footprints showed more granularity than the existing census tract-based maps and captured the transition of WUI dynamics well. More frequent updates of building footprint and improved WUI mapping will improve our understanding of WUI dynamics and provide guidance for adaptive strategies on community planning and wildfire hazard reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.