Abstract

<p>Time restrictions and lack of precision demand that the initial technique be abandoned. Even though the remaining datasets had fewer identified classes than initially planned for the study, the labels were more accurate. Because of the need for additional data, a single network cannot categorize all the essential elements in a picture, including bodies of water, roads, trees, buildings, and crops. However, the final network gains some invariance in detecting these classes with environmental changes due to the different geographic positions of roads and buildings discovered in the final datasets, which could be valuable in future navigation research. At the moment, binary classifications of a single class are the only datasets that can be used for the semantic segmentation of aerial images. Even though some pictures have more than one classification, images of roads and buildings were only found in a significant number of samples. Then, the building datasets were pooled to produce a larger dataset and for the constructed models to gain some invariance on image location. Because of the massive disparity in sample size, road datasets needed to be integrated.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.