Abstract
This paper presents a novel change detection network for identifying scene changes about pairs of aerial images. The aerial images are obtained with Unmanned Aerial Vehicles (UAVs), used to analyze “where and how” changes happened between pairs of images at different times. Even that aerial images could conveniently provide real time detailed information for land cover analysis, there still exist two challenging obstacles for coping with the change detection issue on aerial images. The one is that the paired aerial images captured at different times are roughly aligned due to the fact that the camera is mounted on a moving platform like UAVs. The other one is that season changes, light changes, and noise disturbance frequently happen, and they are useless or even impeditive in real applications. To conquer the problems, we propose a change detection networks named dual regions of interest networks to locate semantic change with object level, which could be easier coping with the above-mentioned compared with pixel-based methods. Moreover, we also introduce a pipeline to create a “Aerial change detection dataset” for the research of the change detection issues of aerial images analysis. Our evaluations on this benchmark dataset, “CDnet 2014 dataset”, and “AICD 2012 dataset” demonstrate the good detection and localization performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.