Abstract

Usage of multiple drones is necessary for aerial filming applications to ensure redundancy. However, this could inevitably contribute to higher risks of collisions, especially when the number of drones increases. Hence, this motivates us to explore various autonomous flight formation control methods that have the potential to enable multiple drones to effectively track a specific target at the same time. In this paper, we designed a model-free deep reinforcement learning algorithm, which is mainly based on the Deep Recurrent Q-Network concept, for the aforementioned purposes. The proposed algorithm was expanded into single and multi-agent types that enable multiple drones tracking while maintaining formation and preventing collision. The involved rewards in these approaches are two-dimensional in nature and are dependent on the communication system. Using Microsoft AirSim simulator, a virtual environment that includes four virtual drones was developed for experimental purposes. A comparison was made among various methods during the simulations, and the results concluded that the recurrent, single-agent model is the most effective method, being 33% more effective than its recurrent, multi-agent counterparts. The poor performance of the non-recurrent, single-agent baseline model also suggests that the recurrent elements in the network are essential to enable desirable multiple-drones flight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call