Abstract
In the operation of wastewater treatment plants a key variable is dissolved oxygen (DO) content in the bioreactors. As oxygen is consumed by the microorganisms, more oxygen has to be added to the water in order to comply with the required minimum dissolved oxygen concentration. This is done using a set of aerators working on/off that represents most of the plant energy consumption. In this paper a hybrid nonlinear predictive control algorithm is proposed, based on economic and control aims. Specifically, the controller minimizes the energy use while satisfying the time-varying oxygen demand of the plant and considering several operation constraints. A parameterization of the binary control signals in terms of occurrence time of events allows the optimization problem to be re-formulated as an nonlinear programming (NLP) problem at every sampling time. Realistic simulation results considering real perturbations data sets for the inlet variables are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.