Abstract

Datasets at resolutions many times greater than previously available were used to study aeolian features within Gale Crater. High resolution thermal inertia data allowed for detailed particle size estimation, with the data sufficient to resolve dunefields. A wide range of grain sizes have now been identified in the Gale Crater dunefields, ranging from medium to very coarse sand. High Resolution Imaging Science Experiment (HiRISE) and THEMIS VIS data allowed for detailed analysis of the dune morphology and slip-faces, which shows that the dunes have responded to topographic influences on prevailing wind directions under a present day wind regime. This result was corroborated by a regional mesoscale model for the crater under dust storm conditions. The central mound and smaller scale crater floor topography has altered the prevailing wind regime and dune patterns. Aeolian activity has thus played, and continues to play, an important role in shaping many of the present surface features of Gale Crater. The arrival of a future lander mission such as the Mars Science Laboratory would be able to sample these surface features directly and add a wealth of data to the understanding of Gale Crater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.