Abstract

Aeolian dust is an essential source of growth-limiting nutrients for marine phytoplankton. Despite being at the core of the Global Dust Belt, the response of the Arabian Gulf ecosystem to such atmospheric forcing is rarely documented. Here, the hydro-biological effect of mineral dust was studied in the northern Arabian Gulf (NAG) off Kuwait through monthly water sampling (December 2020 to December 2021), dust-storm follow-up sampling, and mineral dust and nutrient addition in-situ experiments. The multivariate analysis of oceanographic data revealed pronounced hydro-biological seasonality. The mineral dust deposition during two severe dust storm events in March and June 2021 showed a spatially varying effect of dust on coastal waters. The dust storms elevated the surface dissolved iron levels by several magnitudes, increased the dissolved inorganic nitrogen and phosphorous levels, changed their stoichiometry, and offset the hydrobiological seasonality. In the microcosms, dust input temporarily reduced phytoplankton phosphorous limitation in a dose-dependent manner when mesozooplankton (copepods) grazing was minimal. The microphytoplankton response to mineral dust inputs was comparable to that with nitrogen and phosphorous treatment. While Both treatments increased diatom size structure and biomass, the abundance of single-celled diatoms was comparatively higher in dust treatment. Multivariate analysis indicated that dust deposition alters the hydrographical properties of the surface ocean during dust storm events. The effects, though transient, were traceable for 3–16 days post-storm in coastal waters. The response of the summer phytoplankton to these changes, if delayed or muted, should be interpreted with caution given the summer water column stratification, the high nitrogen: phosphorous ratio and the low phosphorous solubility of aerosol dust, and the complex pelagic microbial food web interactions in the NAG. This study thus underlines the importance of a multivariate approach in documenting the ecological implications of Aeolian dust storms on marine environments closer to the dust source regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call