Abstract
Seasonal changes in methane background levels and methane spikes have been detected in situ a metre above the Martian surface, and larger methane plumes detected via ground-based remote sensing, however their origin have not yet been adequately explained. Proposed methane sources include the UV irradiation of meteoritic-derived organic matter, hydrothermal reactions with olivine, organic breakdown via meteoroid impact, release from gas hydrates, biological production, or the release of methane from fluid inclusions in basalt during aeolian erosion. Here we quantify for the first time the potential importance of aeolian abrasion as a mechanism for releasing trapped methane from within rocks, by coupling estimates of present day surface wind abrasion with the methane contents of a variety of Martian meteorites, analogue terrestrial basalts and analogue terrestrial sedimentary rocks. We demonstrate that the abrasion of basalt under present day Martian rates of aeolian erosion is highly unlikely to produce detectable changes in methane concentrations in the atmosphere. We further show that, although there is a greater potential for methane production from the aeolian abrasion of certain sedimentary rocks, to produce the magnitude of methane concentrations analysed by the Curiosity rover they would have to contain methane in similar concentrations as economic reserved of biogenic/thermogenic deposits on Earth. Therefore we suggest that aeolian abrasion is an unlikely origin of the methane detected in the Martian atmosphere, and that other methane sources are required.
Highlights
The Mars Science Laboratory Curiosity rover has measured background levels of atmospheric methane a metre above the Martian surface of 0.41 ± 0.16 ppb/sol with spikes of up to 7 ppb[1,2]
Methane preserved within sedimentary deposits formed in surface environments on Earth, typically has a biogenic origin and/ or a thermogenic origin[21]
There is a lack of evidence for present day substantial methane fluxes from biogenic, thermogenic or abiogenic sources[23]
Summary
The Mars Science Laboratory Curiosity rover has measured background levels of atmospheric methane a metre above the Martian surface of 0.41 ± 0.16 ppb/sol with spikes of up to 7 ppb[1,2]. We estimate methane fluxes from aeolian abrasion by combining estimates of a range of current Martian surface abrasion rates (μm yr−1) with published and newly determined methane contents (nmol g−1) from a range of SNC meteorites and analogue terrestrial rocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.