Abstract

Aegyptin is a 30 kDa mosquito salivary gland protein that binds to collagen and inhibits platelet aggregation. We have studied the biophysical properties of aegyptin and its mechanism of action. Light-scattering plot showed that aegyptin has an elongated monomeric form, which explains the apparent molecular mass of 110 kDa estimated by gel-filtration chromatography. Surface plasmon resonance identified the sequence RGQOGVMGF (where O is hydroxyproline) that mediates collagen interaction with von Willebrand factor (vWF) as a high-affinity binding site for aegyptin, with a K(D) of approximately 5 nM. Additionally, aegyptin interacts with the linear peptide RGQPGVMGF and heat-denatured collagen, indicating that the triple helix and hydroxyproline are not a prerequisite for binding. However, aegyptin does not interact with scrambled RGQPGVMGF peptide. Aegyptin also recognizes the peptides (GPO)(10) and GFOGER with low affinity (microM range), which respectively represent glycoprotein VI and integrin alpha2beta1 binding sites in collagen. Truncated forms of aegyptin were engineered, and the C-terminus fragment was shown to interact with collagen and to attenuate platelet aggregation. In addition, aegyptin prevents laser-induced carotid thrombus formation in the presence of Rose Bengal in vivo, without significant bleeding in rats. In conclusion, aegyptin interacts with distinct binding sites in collagen, and is useful tool to inhibit platelet-collagen interaction in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.