Abstract

BackgroundDengue fever, the most prevalent global arboviral disease, represents an important public health problem in Indonesia. Control of dengue relies on the control of its main vector, the mosquito Aedes aegypti, yet nothing is known about the population history and genetic structure of this insect in Indonesia. Our aim was to assess the spatio-temporal population genetic structure of Ae. aegypti in Yogyakarta, a densely populated region on Java with common dengue outbreaks.MethodsWe used multiple marker systems (microsatellites, nuclear and mitochondrial genome-wide single nucleotide polymorphisms generated via Restriction-site Associated DNA sequencing) to analyze 979 Ae. aegypti individuals collected from the Yogyakarta city and the surrounding hamlets during the wet season in 2011 and the following dry season in 2012. We employed individual- and group-based approaches for inferring genetic structure.ResultsWe found that Ae. aegypti in Yogyakarta has spatially structured and seasonally stable populations. The spatial structuring was significant for the nuclear and mitochondrial markers, while the temporal structuring was non-significant. Nuclear markers identified three main genetic clusters, showing that hamlets have greater genetic isolation from each other and from the inner city sites. However, one hamlet experienced unrestricted mosquito interbreeding with the inner city, forming a single genetic cluster. Genetic distance was poorly correlated with the spatial distance among mosquito samples, suggesting stronger influence of human-assisted gene flow than active mosquito movement on spatial genetic structure. A star-shaped mitochondrial haplotype network and a significant R2 test statistic (R2 = 0.0187, P = 0.001) support the hypothesis that Ae. aegypti in Yogyakarta originated from a small or homogeneous source and has undergone a relatively recent demographic expansion.ConclusionWe report the first insights into the spatio-temporal genetic structure and the underlying processes in the dengue fever mosquito from Yogyakarta, Indonesia. Our results provide valuable information on the effectiveness of local control measures as well as guidelines for the implementation of novel biocontrol strategies such as release of Wolbachia-infected mosquitoes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-015-1230-6) contains supplementary material, which is available to authorized users.

Highlights

  • Dengue fever, the most prevalent global arboviral disease, represents an important public health problem in Indonesia

  • A surge in dengue outbreaks is attributed to a combination of factors such as rapid human population growth, migration from rural to urban areas, inadequate basic urban infrastructure and public health measures [3], all of which favor viral transmission by the main vector Aedes aegypti

  • Insecticide applications remain the predominant strategy to control the dengue fever mosquito, but their extensive and inappropriate use has led to a development of insecticide resistance in Ae. aegypti populations around the world, including Indonesia [7, 8]

Read more

Summary

Introduction

The most prevalent global arboviral disease, represents an important public health problem in Indonesia. A surge in dengue outbreaks is attributed to a combination of factors such as rapid human population growth, migration from rural to urban areas, inadequate basic urban infrastructure and public health measures [3], all of which favor viral transmission by the main vector Aedes aegypti. This mosquito has a close association with human habitation, preferentially exploiting domestic environments for its feeding and breeding requirements [4,5,6]. This strategy is based on the releases of Wolbachia-infected Ae. aegypti into the field to replace the vector competent populations with mosquitoes that have a significantly diminished capacity for pathogen transmission [13,14,15]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.