Abstract

BackgroundUnderstanding the breeding patterns of Aedes aegypti in households and the factors associated with infestation are important for implementing vector control. The baseline survey of a cluster randomised controlled trial of community mobilisation for dengue prevention in Mexico and Nicaragua collected information about the containers that are the main breeding sites, identified possible actions to reduce breeding, and examined factors associated with household infestation. This paper describes findings from the Mexican arm of the baseline survey.MethodsIn 2010 field teams conducted household surveys and entomological inspections in 11,995 households from 90 representative communities in the three coastal regions of Guerrero State, Mexico. We characterized Ae. aegypti breeding sites and examined the effect of two preventive measures: temephos application in water containers, and keeping the containers covered. We examined associations with household infestation, using bivariate and multivariate analysis adjusted for clustering effects.ResultsWe conducted entomological inspections in 11,995 households. Among 45,353 water containers examined, 6.5% (2958/45,353) were positive for larvae and/or pupae. Concrete tanks (pilas) and barrels (tambos) together accounted for 74% of pupal productivity. Both covering water containers and inserting temephos were independently associated with a lower risk of presence of larvae or pupae, with the effect of covering (OR 0.22; 95% CIca 0.15–0.27) stronger than that of temephos (OR 0.66; 95% CIca 0.53–0.84). Having more than four water containers was associated with household infestation in both rural areas (OR 1.42; 95% CIca 1.17–1.72) and urban areas (1.81; 1.47–2.25), as was low education of the household head (rural: 1.27; 1.11–1.46, and urban: 1.39; 1.17–1.66). Additional factors in rural areas were: household head without paid work (1.31; 1.08–1.59); being in the Acapulco region (1.91; 1.06–3.44); and using anti-mosquito products (1.27; 1.09–1.47). In urban areas only, presence of temephos was associated with a lower risk of household infestation (0.44; 0.32–0.60).ConclusionConcrete tanks and barrels accounted for the majority of pupal productivity. Covering water containers could be an effective means of Ae. aegypti vector control, with a bigger effect than using temephos. These findings were useful in planning and implementing the Camino Verde trial intervention in Mexico.

Highlights

  • Understanding the breeding patterns of Aedes aegypti in households and the factors associated with infestation are important for implementing vector control

  • We examined the association between two preventive actions - placing temephos in containers and covering containers – and the presence of any Ae. aegypti larvae or pupae in the container, taking account of both actions together using the Mantel Haenszel procedure [19], and adjusting for clustering using the method of Lamothe [20]

  • The factors we examined included: region of residence and whether urban or rural, type of housing and its use, language spoken at home, regularity of water supply and refuse collection, number of receptacles containing water in the household, presence of temephos in any of the containers, household use of anti-mosquito products, employment status of the household head, education of the household head, and respondent knowledge of the dengue vector

Read more

Summary

Introduction

Understanding the breeding patterns of Aedes aegypti in households and the factors associated with infestation are important for implementing vector control. The baseline survey of a cluster randomised controlled trial of community mobilisation for dengue prevention in Mexico and Nicaragua collected information about the containers that are the main breeding sites, identified possible actions to reduce breeding, and examined factors associated with household infestation. The main dengue vector is the Aedes aegypti mosquito, which is drawn to urban habitats and reproduces mainly in artificial water containers inside or outside households [3]. Low quality urban development contributes to the proliferation of containers in which Ae. aegypti breed [6, 7]. Many types of container can become breeding sites [8], and their contribution to mosquito production may vary depending on the season [9, 10]. Certain household characteristics have been identified as adding to the risk of infestation by immature forms of Ae. aegypti, such as the number of people living in a household and the household head’s educational level [11] and gender [12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call