Abstract

In medical disease diagnosis, the cost of a false negative could greatly outweigh the cost of a false positive. This is because the former could cost a life, whereas the latter may only cause medical costs and stress to the patient. The unique nature of this problem highlights the need of asymmetric error control for binary classification applications. In this domain, traditional machine learning classifiers may not be ideal as they do not provide a way to control the number of false negatives below a certain threshold. This paper proposes a novel tree-based binary classification algorithm that can control the number of false negatives with a mathematical guarantee, based on Neyman–Pearson (NP) Lemma. This classifier is evaluated on the data obtained from different heart studies and it predicts the risk of cardiac disease, not only with comparable accuracy and AUC-ROC score but also with full control over the number of false negatives. The methodology used to construct this classifier can be expanded to many more use cases, not only in medical disease diagnosis but also beyond as shown from analysis on different diverse datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.