Abstract

Microplastics (1 μm - 5 mm) and nanoplastics (1–100 nm), commonly referred to as micro(nano)plastics (MNPs), are widespread in both freshwater and marine habitats, and they can have significant negative effects on exposed organisms. In recent years, the transgenerational toxicity of MNPs has gained considerable attention owing to its potential to harm both parents and descendants. This review summarizes the available literature on the transgenerational combined effects of MNPs and chemicals, aimed at providing a deeper understanding of the toxicity of MNPs and co-occurring chemicals to both parents and offspring in the aquatic environment. The reviewed studies showed that exposure to MNPs, along with inorganic and organic pollutants, increased bioaccumulation of both MNPs and co-occurring chemicals and significantly impacted survival, growth, and reproduction, as well as induced genetic toxicity, thyroid disruption, and oxidative stress. This study further highlights the factors affecting the transgenerational toxicity of MNPs and chemicals, such as MNP characteristics (polymer type, shape, size, concentration, and aging), type of exposure and duration, and interactions with other chemicals. Finally, future research directions, such as the careful consideration of MNP properties in realistic environmental conditions, the use of a broader range of animal models, and the examination of chronic exposure and MNP-chemical mixture exposure, are also discussed as a means of broadening our understanding of the effects of MNPs that are passed down from generation to generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.