Abstract

Little is known of the effects of mechanized harvesting on ground conditions during the harvesting of short-rotation coppice. An investigation was therefore carried out in which different vehicles were used to simulate the effects of wheeling from heavy and light harvesters and crop removal equipment. The experiments were carried out on sites containing Bowles hybrid willow ( Salix viminalis) and poplars ( Populas rap) and on clay and sandy loam soils. The effect of different vehicles was assessed in terms of rut damage and direct measurements of soil stress using buried sensors. Maximum stresses measured 0.3 m below tractor wheels ranged from 50 to 200 kPa, but the greatest stresses, 350 kPa, were recorded under laden trailer wheels. Maximum stresses measured beneath crawler tracks were only 25 kPa. Similarly, substantial ruts were caused by vehicles simulating wheeled harvesters, the deepest ruts were caused by laden trailers but crawler tracks created least disturbance. Wheeling was carried out at soil water contents above the plastic limit and the deepest ruts were created on clay rather than sandy loam soil. The effects of the stresses generated in the soil could impede future root growth, and the deeper ruts formed could damage existing root systems of coppice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.