Abstract

The mariculture environment is a sink of microplastics (MPs) due to its enclosed nature and mass use of plastics. Nanoplastics (NPs) are MPs with a diameter <1 μm that have a more toxic effect on aquatic organisms than other MPs. However, little is known about the underlying mechanisms of NP toxicity on mariculture species. Here, we performed a multi-omics investigation to explore gut microbiota dysbiosis and associated health problems induced by NPs in juvenile sea cucumber Apostichopus japonicus, a commercially and ecologically important marine invertebrate. We observed significant differences in gut microbiota composition after 21 days of NP exposure. Ingestion of NPs significantly increased core gut microbes, especially Rhodobacteraceae and Flavobacteriaceae families. Additionally, gut gene expression profiles were altered by NPs, especially those related to neurological diseases and movement disorders. Correlation and network analyses indicated close relationships between transcriptome changes and gut microbiota variation. Furthermore, NPs induced oxidative stress in sea cucumber intestines, which may be associated with intraspecies variation in Rhodobacteraceae in the gut microbiota. The results suggested that NPs were harmful to the health of sea cucumbers, and they highlighted the importance of the gut microbiota in the responses to NP toxicity in marine invertebrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call