Abstract
The production of biodegradable plastics is considered to be a way to reduce plastic waste issue. Among others, oxo-degradant additives enable a faster degradation of plastics in the environment. However, the introduction of these new materials could provoke the release of substances potentially toxic in the environment. This work determined and compared the toxicity of leachates from various additivated polymers (polyethylene, PE; polypropylene, PP; polystyrene, PS) upon different test organisms: plants (Sorghum saccharatum, Lepidium sativum, Sinapis alba, and Vicia faba), crustacean (Daphnia magna), and luminescent bacteria (Vibrio fischeri). Daphnia magna survival was mainly affected by PS and PP leachates (72% and 61% effect, respectively) while PS notably reduced the reproduction rate. On plants, only PP exerted a negative effect (S. saccharatum IG% 32.4), while V. fischeri always showed values around 50%. The data integration, through the Toxicity Test Battery Integrated Index (TBI) approach, allowed to rank the leachates toxicity as PE > PS > PP. This result could be mainly ascribable to the highest metals content in PE since no difference with organic compounds analysis was evidenced. In conclusion, since the polymers exerted dissimilar toxicity, the additive could not be considered the sole responsible of the measured toxicity, but its role in the enhancement of the virgin polymers leachates effects can be solidly hypothesized.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.