Abstract

As a common additive in cigarette filters, nanosilica has been implemented to reduce the release of harmful substances in cigarette smoke. However, the potential risk of occupational exposure for cigarette factory workers is unknown. We collected physical examination data from 710 cigarette factory workers to evaluate the adverse effects of cigarette filter silica exposure. We also established mouse models induced by cigarette filter silica and crystalline silica separately to compare the lung inflammation, pulmonary function, apoptosis, and fibrosis of the two models. Workers in the rolling and packing workshop exposed to cigarette filter silica had a higher rate of abnormal lung function (17.75%) than those in the cutting workshop (0.87%). Animal experiments showed that compared with the same dose of crystalline silica, cigarette filter silica resulted in higher levels of inflammatory factors in the bronchoalveolar lavage fluid (BALF) of mice at day 7, and lower levels of total lung capacity (TLC), inspiratory capacity (IC), vital capacity (VC), and forced vital capacity (FVC) in mice at day 28. Additionally, both exposed groups of mice showed increased levels of caspase 3, collagen I (Col-Ⅰ), α-smooth muscle actin (α-SMA) and hydroxyproline (HYP) in the lungs, as well as collagen accumulation and fibrous nodules at day 28, with no significant difference between the two groups. The results suggested that cigarette filter silica caused more severe early lung inflammation and late ventilation impairment than the same dose of crystalline silica. In the future, we need to pay more attention to nanosilica protection in cigarette factories to prevent pulmonary dysfunction in workers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call