Abstract

Abstract Experimental heat transfer measurements and analysis for mixed convection in a vertical square channel are presented. Water flow directions are selected such that buoyancy assists or opposes the bulk flow pressure gradient. Unlike most previous experiments with symmetrically heated circular tubes, the present configuration uses an asymmetric heating condition (two sides heated and two sides insulated) and shows significant increase in the Nusselt number for both assisted and opposed flow conditions. Observed heat transfer coefficient distributions are different from the symmetrically heated channels; and this difference in heat transfer coefficient is attributed to the formation of buoyancy driven large-scale flow structures. In general, opposed flow shows higher heat transfer coefficients, and the Nusselt number ratio is observed to increase as Gr/Re or Gr/Re 2 ratios increase for both assisted and opposed flow conditions. A correlation based on the buoyancy parameter predicts the heat transfer pattern well in both assisted and opposed mixed convection. The range of Reynolds numbers discussed (Re=400–10,000) is of importance for direct numerical simulations and the details provided here can serve as the benchmark data required for complicated buoyancy affected turbulence simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call