Abstract
Decision trees are popular models for their interpretation properties and their success in ensemble models for structured data. However, common decision tree learning algorithms produce models that suffer from adversarial examples. Recent work on robust decision tree learning mitigates this issue by taking adversarial perturbations into account during training. While these methods generate robust shallow trees, their relative quality reduces when training deeper trees due the methods being greedy. In this work we propose robust relabeling, a post-learning procedure that optimally changes the prediction labels of decision tree leaves to maximize adversarial robustness. We show this can be achieved in polynomial time in terms of the number of samples and leaves. Our results on 10 datasets show a significant improvement in adversarial accuracy both for single decision trees and tree ensembles. Decision trees and random forests trained with a state-of-the-art robust learning algorithm also benefited from robust relabeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.