Abstract

In many practical visual recognition scenarios, feature distributions between source domain and the target domain are quite different, which results in the emergence of general cross-domain visual recognition problems. To address the problems of visual domain mismatch, we propose a novel shallow semi-supervised adversarial transfer learning network, which is called Coupled adversarial transfer Domain Adaptation (CatDA), for distribution alignment between two domains. The proposed CatDA approach is inspired by cycleGAN, but leveraging multiple shallow multilayer perceptrons (MLPs) instead of deep networks. Specifically, our CatDA comprises of two symmetric and slim sub-networks, such that the coupled adversarial learning framework is formulated. With such symmetry of two generators, the input data from source/target domain can be fed into the MLP network for target/source domain generation, supervised by two confrontation oriented coupled discriminators. Notably, in order to avoid the critical flaw of high-capacity of the feature extraction function during domain adversarial training, domain specific loss and domain knowledge fidelity loss are proposed in each generator, such that the effectiveness of the proposed transfer network is guaranteed. Additionally, the essential difference from cycleGAN is that our method aims to generate domain-agnostic and aligned features for domain adaptation and transfer learning rather than synthesize realistic images. We show experimentally on a number of benchmark datasets and the proposed approach achieves competitive performance over state-of-the-art domain adaptation and transfer learning approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.