Abstract
One of today's most promising developments is wireless networking, as it enables people across the globe to stay connected. As the wireless networks' transmission medium is open, there are potential issues in safeguarding the privacy of the information. Though several security protocols exist in the literature for the preservation of information, most cases fail with a simple spoof attack. So, intrusion detection systems are vital in wireless networks as they help in the identification of harmful traffic. One of the challenges that exist in wireless intrusion detection systems (WIDS) is finding a balance between accuracy and false alarm rate. The purpose of this study is to provide a practical classification scheme for newer forms of attack. The AWID dataset is used in the experiment, which proposes a feature selection strategy using a combination of Elastic Net and recursive feature elimination. The best feature subset is obtained with 22 features, and a deep deterministic policy gradient learning algorithm is then used to classify attacks based on those features. Samples are generated using the Euclidean Jacobian-based Saliency Map Attack (EJSMA) to evaluate classification outcomes using adversarial samples. The meta-analysis reveals improved results in terms of feature production (22 features), classification accuracy (98.75% for testing samples and 85.24% for adversarial samples), and false alarm rates (0.35%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Recent and Innovation Trends in Computing and Communication
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.