Abstract

Broadcast services for wireless local area networks (WLANs) are being standardized in the IEEE 802.11 task group bc. Envisaging the upcoming coexistence of broadcast access points (APs) with densely-deployed legacy APs, this paper addresses a learning-based spatial reuse with only partial receiver-awareness. This partial awareness means that the broadcast APs can leverage few acknowledgment frames (ACKs) from recipient stations (STAs). This is in view of the specific concerns of broadcast communications. In broadcast communications for a very large number of STAs, ACK implosions occur unless some STAs are stopped from responding with ACKs. Given this, the main contribution of this paper is to demonstrate the feasibility to improve the robustness of learning-based spatial reuse to hidden interferers only with the partial receiver-awareness while discarding any re-training of broadcast APs. The core idea is to leverage robust adversarial reinforcement learning (RARL), where before a hidden interferer is installed, a broadcast AP learns a rate adaptation policy in a competition with a proxy interferer that provides jamming signals intelligently. Therein, the recipient STAs experience interference and the partial STAs provide a feedback overestimating the effect of interference, allowing the broadcast AP to select a data rate to avoid frame losses in a broad range of recipient STAs. Simulations demonstrate the suppression of the throughput degradation under a sudden installation of a hidden interferer, indicating the feasibility of acquiring robustness to the hidden interferer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.