Abstract
Temporal link prediction has been extensively studied and widely applied in various applications, aiming to predict future network links based on the historical networks. However, most existing methods ignore the behavior of previous network updating information in temporal networks. To address these issues, we propose a novel link prediction model based on adversarial nonnegative matrix factorization, which fuses graph representation and adversarial learning to perform temporal link prediction. Specifically, we add a bounded adversary matrix to the input matrix to provide the robustness against real perturbations. Then, our model fully exploits the impact of snapshots by using communicability. Simultaneously, we utilize the cosine similarity to extract the node similarity and map it to low-dimensional latent representation to preserve the local structure. Additionally, we provide effective updating rules to learn the parameters of this model. Extensive experiments results on six real-world networks demonstrate that the proposed method outperforms several classical and the state-of-art matrix-based methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.