Abstract
Biomedical factoid question answering is an essential application for biomedical information sharing. Recently, neural network based approaches have shown remarkable performance for this task. However, due to the scarcity of annotated data which requires intensive knowledge of expertise, training a robust model on limited-scale biomedical datasets remains a challenge. Previous works solve this problem by introducing useful knowledge. It is found that the interaction between question and answer (QA-interaction) is also a kind of knowledge which could help extract answer accurately. This research develops a knowledge distillation framework for biomedical factoid question answering, in which a teacher model as the knowledge source of QA-interaction is designed to enhance the student model. In addition, to further alleviate the problem of limited-scale dataset, a novel adversarial knowledge distillation technique is proposed to robustly distill the knowledge from teacher model to student model by constructing perturbed examples as additional training data. By forcing the student model to mimic the predicted distributions of teacher model on both original examples and perturbed examples, the knowledge of QA-interaction can be learned by student model. We evaluate the proposed framework on the widely used BioASQ datasets, and experimental results have shown the proposed method's promising potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.