Abstract
We propose a conditional Generative Adversarial Network (cGAN) that can produce detailed local wind fields in urban areas, comparable in level of detail to those from Computational Fluid Dynamics (CFD) simulations, that are generated from coarser Numerical Weather Prediction (NWP) data.In our approach, the cGAN is trained using NWP data as input and CFD as targets. Both CFD and NWP data are presented to the network as images, using an image-to-image model based on Pix2Pix to transform coarse meteorological conditions into detailed local wind fields.The methodology is tested in a residential district in a large Spanish city, Zaragoza. The model predictions show significant agreement with the actual CFD results, while reducing the computational time from eight hours to seconds. Feature engineering of image channels effectively reduces the model error, especially in the wind direction, achieving a mean absolute error in the wind speed of 0.35m/s and a wind direction error of 27.0°.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.