Abstract
Deep convolutional neural networks (CNNs) have made a breakthrough on supervised SAR images classification. However, SAR imaging is considerably affected by the frequency band. That means a neural network trained on a SAR image set of one band is not suitable for the classification of another band images. As manually labeling the training samples of each band is always time-consuming, we propose an unsupervised multi-level domain adaptation method based on adversarial learning to solve the problem of multi-band SAR images classification. First, we train a discriminative CNN using samples of one frequency band data set that contains labels to map the data to a latent feature space. Then, we adjust the trained CNN to map the unlabeled samples of another frequency band data set to the same feature space through alternately optimizing two adversarial loss functions. Thus, the features of these two band images are fused and can be classified by the same classifier. We checked the performance of our method using both simulated data and measured data. Our method made a breakthrough in the classification of multi-band images with accuracies of 99% on both data sets. The results are even very close to the supervised CNN trained using a large number of labeled samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.