Abstract

Deep learning models have been used in creating various effective image classification applications. However, they are vulnerable to adversarial attacks that seek to misguide the models into predicting incorrect classes. Our study of major adversarial attack models shows that they all specifically target and exploit the neural networking structures in their designs. This understanding led us to develop a hypothesis that most classical machine learning models, such as random forest (RF), are immune to adversarial attack models because they do not rely on neural network design at all. Our experimental study of classical machine learning models against popular adversarial attacks supports this hypothesis. Based on this hypothesis, we propose a new adversarial-aware deep learning system by using a classical machine learning model as the secondary verification system to complement the primary deep learning model in image classification. Although the secondary classical machine learning model has less accurate output, it is only used for verification purposes, which does not impact the output accuracy of the primary deep learning model, and, at the same time, can effectively detect an adversarial attack when a clear mismatch occurs. Our experiments based on the CIFAR-100 dataset show that our proposed approach outperforms current state-of-the-art adversarial defense systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.