Abstract

In mechanical anomaly detection, algorithms with higher accuracy, such as those based on artificial neural networks, are frequently constructed as black boxes, resulting in opaque interpretability in architecture and low credibility in results. This article proposes an adversarial algorithm unrolling network (AAU-Net) for interpretable mechanical anomaly detection. AAU-Net is a generative adversarial network (GAN). Its generator, composed of an encoder and a decoder, is mainly produced by algorithm unrolling of a sparse coding model, which is specially designed for feature encoding and decoding of vibration signals. Thus, AAU-Net has a mechanism-driven and interpretable network architecture. In other words, it is ad hoc interpretable. Moreover, a multiscale feature visualization approach for AAU-Net is introduced to verify that meaningful features are encoded by AAU-Net, helping users to trust the detection results. The feature visualization approach enables the results of AAU-Net to be interpretable, i.e., post hoc interpretable. To verify AAU-Net's capability of feature encoding and anomaly detection, we designed and performed simulations and experiments. The results show that AAU-Net can learn signal features that match the dynamic mechanism of the mechanical system. Considering the excellent feature learning ability, unsurprisingly, AAU-Net achieves the best overall anomaly detection performance compared with other algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.