Abstract

As we push forward on understanding the fate of chemicals in the environment, we need a method that will allow for the simulation of the inherent heterogeneity. Density functional tight binding (DFTB) is a methodology that allows for a detailed electronic description and would be ideal for this problem. While many parameters can be derived directly from DFT, empirical parameters still exist in the confinement and repulsion potentials. In this manuscript, we examine these potentials and present solutions that will minimize the degree of empiricism. Our results show that it is possible to construct confinement potentials from examining the atomic radial wavefunctions. Moreover, we found that the heterogeneous repulsion potentials can be derived from using only homogeneous repulsion curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.