Abstract

BackgroundThe role of vascular endothelial growth factors (VEGFs) in neointimal formation has been controversial. VEGF receptor (R)-2 signaling pathway is crucial in bringing about the effects of VEGFs including vasodilatation, endothelial cell migration and proliferation. In this study we have used an established adventitial gene transfer technique, in vitro studies and a novel VEGF-E/PlGF chimera that binds specifically to VEGFR-2, to investigate the role of VEGFR-2 in neointimal formation. MethodsIntimal hyperplasia was induced in the carotid arteries of cholesterol fed male New Zealand White rabbits using a silastic collar. Adenoviral vectors encoding VEGF-E chimera (1×109pfu/ml) were transferred to the adventitia of the carotid arteries either alone or together with adenoviruses encoding soluble VEGFR-2 (sVEGFR-2). Adenoviruses encoding LacZ were used as controls. All animals were sacrificed 7 days after the gene transfer. ResultsSignificant increases in neointimal formation, proliferating cells, inflammatory responses and adventitial angiogenesis were observed in the VEGF-E chimera transduced arteries. The number of medial smooth muscle cells expressing VEGFR-2 was significantly (p<0.001) higher. MCP-1 mRNA levels were significantly (p<0.01) increased in the VEGF-E chimera transduced arteries and transduced rabbit aortic smooth muscle cells (p<0.05). Soluble VEGFR-2 (sVEGFR-2) significantly inhibited VEGF-E chimera induced neointimal formation (p<0.01), cellular proliferation (p<0.01), inflammatory responses (p<0.01) and adventitial angiogenesis (p<0.01). ConclusionsThe results indicate that VEGFR-2 mediated signaling could aggravate neointimal formation and suggest a potential therapeutic role of sVEGFR-2 in inhibiting neointimal formation and adventitial angiogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call