Abstract

Following field observations of increased photosynthesis at increased rates of sediment flushing in sandy sediments, we conducted a series of laboratory experiments to elucidate the mechanism behind these observations. Column experiments in which water was pumped though sand at rates ranging from 0 to 613 L m−2 d−1 showed that carbon (C) fixation, as measured using carbon‐14 (14C) incorporation, increased from 6.4 to 8.6 mmol m−2 h−1 with increasing rates of flushing. Bottle incubations showed that the addition of inorganic nutrients [ammonium ion (NH4+), inorganic phosphate (HPO4−), silicic acid Si(OH)4] did not stimulate C fixation over short‐term incubations. Microprofiles of pH showed that the pH within the photic zone increased to 8.9, reducing free carbon dioxide (CO2) concentrations to ~0.5 µmol L−1. Further bottle incubations, where pH and total inorganic carbon (TCO2) were manipulated, showed that high pH (9.6) did not affect photosynthesis if free CO2 was present at concentrations of 10 µmol L−1, suggesting a direct effect of low free CO2 concentrations. 14C fixation profiles at a resolution of 100 µm recorded by b‐radiation imaging showed that while the depth specific maximum rates of C fixation were the same under both diffusive and advective (flushed) conditions, the integrated rates of photosynthesis were highest under flushed conditions because of a thickening of the photosynthetic zone. We conclude that advective pore‐water transport can enhance benthic photosynthesis in shallow permeable sand sediments by counteracting CO2 limitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.