Abstract

Extensive numerical experiments are performed on tracer dispersion in global reanalysis wind fields. Particle trajectories are computed both along an isobaric (500 hPa) and an isentropic (315 K) surface in a time interval of one year. Besides mean quantities such as advection of the center of mass and growth of tracer clouds, special attention is paid to the evaluation of particle pair separation dynamics. The characteristic behavior for intermediate time scales is Batchelor's dispersion along both surfaces, where the zonal extent of the tracer cloud increases linearly in time. The long-time evolution after 70–80 days exhibits a slower, diffusive dispersion (Taylor regime), in agreement with expectations. Richardson–Obukhov scaling (superdiffusion with an exponent of 3/2) could not be identified in the numerical tests. The results confirm the classical prediction by Batchelor that the initial pair-separation determines subsequent time evolution of tracers. The quantitative dependence on the initial distance differs however from the prediction of the theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.