Abstract

Abstract We report a study of a coastal frontal zone of the southeastern United States based on a field experiment and numerical modeling. The study was conducted in the spring of 1985 during weak to moderate wind stress and strong input of buoyancy from solar radiation and river discharge. The study confirms that the structure and slope of the frontal zone depends on a combination of wind stress and cross-shelf advection of buoyancy. A cross-shelf/depth two-dimensional (x, y), time-dependent numerical model illustrated the response of the frontal zone to the local wind stress regimes. A comparison of model results with field data showed that the model successfully predicted onsets of stratification and mixing. When alongshore wind stress was negative (southward), isopycnals in the frontal zone steepened due to a combination of horizontal advection and vertical convection. When stress was positive (northward), the offshore advection of low density water flattened the isopycnals and potential energy decrea...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call