Abstract

The Rayleigh-Lowe-Andersen thermostat is a momentum-conserving, Galilean-invariant analogue of the Andersen thermostat, like the original (Maxwellian) Lowe-Andersen thermostat. However, the Rayleigh-Lowe-Andersen thermostat remains local even if the fluid density becomes low. By using a minimized thermostat interaction radius we show with a molecular dynamics simulation that the Rayleigh-Lowe-Andersen thermostat affects the natural dynamics of a low-density Lennard-Jones fluid in a minimal fashion. We also show that it is no longer necessary to consider a separate simulation just to determine the optimal value of the thermostat interaction radius. Instead, this value is computed directly during the main simulation run. Because the Rayleigh-Lowe-Andersen thermostat can be combined with the velocity Verlet integration scheme, we expect a widespread applicability of the thermal mechanism presented here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call