Abstract

The surface nuclear magnetic resonance (SNMR) method is widely used in groundwater detection because of its sensitivity to hydrogen in water and direct water detection. However, low signal-to-noise ratios (SNRs) restrict the development of this technique. An optimum pulse sequence is designed according to correspondence between the pulse moment strength and its best detection depth. Because only selection of the pulse intensity distribution according to the target aquifer depth is required and the "on-resonance" pulse pattern is still employed, this pulse sequence emission can be easily achieved using existing SNMR instrumentation. Numerical simulation results and field experiments show that, compared with traditional exponential growth pulses, the optimum pulse sequence effectively improves the SNR of the SNMR method. The aquifer boundary, water content, and pore characteristics of the inversion result are thus more consistent with characteristics of underground structures. Additionally, because the optimum pulse sequence focuses most of the pulse moments in the target depth range, in situations where two aquifers are separated by a relatively narrow aquitard, it is better able to resolve the individual aquifers than the traditional pulses. Optimum pulse moments improve the SNR by enhancing the signal amplitude, compared with various filtering methods, and obtain a better detection effect. This kind of pulse sequence can be used as an alternative pulse sequence form of the SNMR method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.