Abstract

BackgroundTotal knee arthroplasty (TKA) is most frequently planned using conventional two-dimensional weight-bearing lower limb radiographs and is performed with conventional femoral and tibial cutting guides. Questions have been raised about the accuracy of conventional TKA instrumentation and planning for an anatomically standard or complex joint. Use of computed tomography (CT)-based three-dimensional (3D) templating and patient-specific cutting guides printed in 3D has shown improved postoperative lower limb alignment parameters. This case-control study compared costs and operative times of using CT-based, patient-specific, single-use instruments versus conventional metal instruments for TKA.MethodsIn this case-control, retrospective chart review, all TKAs were performed by one senior surgeon, using the F.I.R.S.T. posterior-stabilised knee prosthesis (Symbios, CH), with a similar protocol and identical operating room setup. Group A included 51 TKAs performed with patient-specific cutting guides and conventional metal instruments. Group B included 49 TKAs performed with patient-specific cutting guides and patient-specific, single-use instrumentation. Operation duration, number of instrumentation trays and sterilisation costs were evaluated.ResultsThe groups were similar for age, body mass index, hip-knee-ankle angle and operation duration. The mean number of instrumentation trays was 8.0 ± 0.8 for group A (controls) and 5.1 ± 0.9 for group B (p<0.001). The mean sterilisation costs were 380 ± 47 Swiss Francs (CHF) for group A and 243 ± 55 CHF for group B (p<0.001), for a mean cost reduction of 130.50 CHF per intervention in group B. The time interval between two consecutive surgeries was 24 min for group A and 18 min for group B. There were no adverse events or complications, instrument-related or otherwise.ConclusionCompared to conventional instrumentation, use of patient-specific, single-use instruments for TKA reduced the number of instrumentation trays by more than one-third and saved 36% in sterilisation costs. If fabrication costs of single-use instruments are included by the company, the total cost is significantly diminished. There was no operative time advantage for single-use instrumentation.

Highlights

  • Total knee arthroplasty (TKA) is most frequently planned using conventional two-dimensional weightbearing lower limb radiographs and is performed with conventional femoral and tibial cutting guides

  • Questions have been raised about the accuracy of conventional TKA instrumentation and twodimensional planning for an anatomically standard or complex joint [2, 3]

  • Computer tomography (CT)-based three-dimensional (3D) templating and patient-specific cutting guides are an innovative alternative to conventional cutting guides for TKA

Read more

Summary

Introduction

Total knee arthroplasty (TKA) is most frequently planned using conventional two-dimensional weightbearing lower limb radiographs and is performed with conventional femoral and tibial cutting guides. Use of computed tomography (CT)-based three-dimensional (3D) templating and patient-specific cutting guides printed in 3D has shown improved postoperative lower limb alignment parameters. This case-control study compared costs and operative times of using CT-based, patient-specific, single-use instruments versus conventional metal instruments for TKA. Several studies have shown improved postoperative lower limb alignment parameters, such as hip-knee-ankle (HKA) angle [4, 5] and alpha and beta angles [6], improved accuracy of implant size determination and positioning of tibial implant [7] and favourable femoral rotational alignment [8] with CT-based, 3D, patient-specific instrumentation compared to conventional instruments. Whether mechanical alignment outliers are reduced using patient-specific guides and instrumentation remains controversial [4, 5, 9,10,11,12]; some studies reported shorter operating time with the use of patient-specific instrumentation [10, 13, 14], others did not [15, 16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call