Abstract

The sodiation properties of alloy-type anode materials (Si, Ge, and Sn) have been evaluated in terms of electrochemical energy storage using first-principles molecular dynamics calculations. We report that Ge can deliver reasonably good performance in all aspects of sodium storage capability, mechanical stability, and ion conductivity, when compared with Si and Sn. The Ge anode: (1) has a strong thermodynamic driving force for sodiation that is comparable to that of Sn and much stronger than that of Si, (2) exhibits moderate volume expansion and bulk modulus upon sodiation that are superior to those of Sn, and (3) allows fast Na ion conductivity that is comparable to that of Sn and is faster by three orders of magnitude than that of Si. Our study suggests that among the group 14 elements, Ge is fairly promising as an anode material for Na-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.