Abstract

We developed a novel junction profile engineering technique that uses laser spike annealing (LSA): LSA is implemented prior to spike-RTA to modulate the junction profile. With this technique, we can improve the performance of MOSFETs more effectively than conventional techniques. In addition, it enables us to use lower LSA temperatures with wide process window (at least 60degC) because of its low sensitivity to LSA temperatures within a certain range, while the conventional ways require ultra high temperatures to improve the device performance. We applied this technique to 45-nm node high performance (HP) CMOS devices with a gate length of 32-nm. A reduction in the source-drain parasitic resistance achieves 8.8% / 5% of improvements in the saturation on-current (Ion) for PMOS / NMOS, and Ion = 750(P) / 1030(N) [muA/mum] for Ioff = 100 [nA/mum] at Vdd= 1.0V. We also demonstrated the advantages of this technique by evaluating the performance of ring oscillators, SRAM yields and accuracy of precision poly resistors from the LSI manufacturing point of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call