Abstract

Studies on the value of culture-independent molecular identification of bacteria in cardiac valves are mostly restricted to comparing agreement of identification to what is obtained by culture to the number of identified bacteria in culture-negative cases. However, evaluation of the usefulness of direct molecular identification should also address weaknesses, their relevance in the given setting, and possible improvements.In this study cardiac valves from 56 Danish patients referred for surgery for infective endocarditis were analysed by microscopy and culture as well as by PCR targeting part of the bacterial 16S rRNA gene followed by DNA sequencing of the PCR product. PCR and DNA sequencing identified significant bacteria in 49 samples from 43 patients, including five out of 13 culture-negative cases. No rare, exotic, or intracellular bacteria were identified. There was a general agreement between bacterial identity obtained by ribosomal PCR and DNA sequencing from the valves and bacterial isolates from blood culture. However, DNA sequencing of the 16S rRNA gene did not discriminate well among non-haemolytic streptococci, especially within the Streptococcus mitis group.Ribosomal PCR with subsequent DNA sequencing is an efficient and reliable method of identifying the cause of IE, but exact species identification of some of the most common causes, i.e. non-haemolytic streptococci, may be improved with other molecular methods.

Highlights

  • IntroductionExact identification of the infecting agent is essential for specific and adequate antibiotic therapy

  • Infective endocarditis (IE) is a serious condition with a high mortality

  • Microscopy of the 36 valve tissue samples from the patients without IE showed varying numbers of leucocytes, but no bacteria were visible in any sample

Read more

Summary

Introduction

Exact identification of the infecting agent is essential for specific and adequate antibiotic therapy. Cardiac surgery may be necessary when the infection has led to severe tissue destruction. The present prospective study was designed to establish the value of PCR and DNA sequencing as a routine method for identifying the aetiology of culture-negative IE in a Danish population and to evaluate the spectrum of infecting bacteria in this population. Cardiac valve material from patients who did not suffer from IE was analysed in order to ascertain possible false positive results. Results from PCR and DNA sequence analyses on valves from patients with IE were compared to microscopy and culture. The reliability of species identification by PCR/DNA sequencing of the removed valves was judged by comparing to results from previously obtained blood cultures, if available

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call