Abstract
The pros and the cons of lean-burn, compression ignition (CI), direct injection (DI) internal combustion engines (ICE) are reviewed for transport applications. Fueling options considered include diesel only and dual-fuel applications with diesel and a gaseous fuel (CNG, LNG and LPG). CIDI ICEs have higher fuel conversion efficiencies than stoichiometric, spark ignition (SI) ICEs, whether DI or port fuel injected (PFI). However, diesel-fueled CIDI ICEs have higher particulate matter (PM) and NOx engine-out emissions. The tail-pipe NOx emissions in real-world driving of diesel-powered vehicles have been, in the past, above the limits requested over the simplified cold start driving cycles used for certification. This issue has recently been resolved. The newest diesel-powered vehicles are now compliant with new laboratory test cycles and real-world-driving schedules and have no disadvantages in terms of criteria air pollutants compared to older diesel vehicles, while delivering improvements in fuel economy and CO2 emissions. Dual-fuel CIDI ICEs offer the opportunity for enhanced environmental friendliness. Dual-fuel CIDI ICEs have lower engine-out NOx and PM emissions compared to diesel-only CIDI ICEs. The latest diesel-only vehicles and vehicles with dual-fuel ICEs deliver dramatic reductions in tail-pipe PM emissions compared to older diesel-only vehicles. Moreover, they deliver tail-pipe PM emissions well below the ambient conditions in most city areas that are highly polluted, thereby helping to clean the air. The diesel-fueled CIDI ICEs may be further improved to deliver better fuel economy and further reduced tail-pipe emissions. The dual-fuel CIDI ICE has more room for improvement to produce similar or better steady state and transient performance in terms of torque, power output and fuel conversion efficiency compared to diesel-fueled CIDI ICEs, while drastically reducing CO2 and PM tail-pipe emissions, and improving NOx tail-pipe emissions. This is due to the ability to modulate the premixed and diffusion phases of combustion with a second fuel that is much easier to vaporize and is less prone to auto-ignition. Further development of the fuel injection system for the second fuel will lead to novel dual-fuel CIDI ICE designs with better performance.
Highlights
The lean-burn, compression ignition (CI), direct injection (DI), is the most efficient internal combustion engine (ICE) (Zhao, 2009; Mollenhauer and Tschöke, 2010)
Combined-cycle generators, not with petroleum, that have an efficiency of 34.78%, but with natural gas, that have an efficiency of 44.61%, surpass the internal combustion generators
In addition to improved fuel standards and expansion of the use of electric vehicles, significant uptake of recent diesel vehicles equipped with particle traps may further contribute to the improved air quality of a city that still falls short of any World Health Organization (WHO) guideline
Summary
The lean-burn, compression ignition (CI), direct injection (DI), is the most efficient internal combustion engine (ICE) (Zhao, 2009; Mollenhauer and Tschöke, 2010). It produces engineout emissions of nitrous oxides and particulate matter (PM) that need after treatment to match the extremely low limits set up for transport applications (Lloyd and Cackette, 2001; Burtscher, 2005; Maricq, 2007), despite air quality is influenced by the transport emissions but by many other sources. As the goal is to provide equal or better performances (power, torque, transient operation) and emissions of the latest diesel with a dual fuel design, this dual-fuel design must adopt the direct injection of the diesel and the gaseous fuel
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.