Abstract

A fundamental molecular feature of olfactory systems is that individual neurons express only one receptor from a large odorant receptor gene family. While numerous theories have been proposed, the functional significance and evolutionary advantage of generating a sophisticated one-receptor-per neuron expression pattern is not well understood. Using the genetically tractable Drosophila melanogaster as a model, we demonstrate that the breakdown of this highly restricted expression pattern of an odorant receptor in neurons leads to a deficit in the ability to exploit new food sources. We show that animals with ectopic co-expression of odorant receptors also have a competitive disadvantage in a complex environment with limiting food sources. At the level of the olfactory system, we find changes in both the behavioral and electrophysiological responses to odorants that are detected by endogenous receptors when an olfactory receptor is broadly misexpressed in chemosensory neurons. Taken together these results indicate that restrictive expression patterns and segregation of odorant receptors to individual neuron classes are important for sensitive odor-detection and appropriate olfactory behaviors.

Highlights

  • The molecular and cellular organization of an olfactory system consists of several sensor types each expressing one member from a large odorant receptor family

  • A wild-type promoter construct of Or42a drives expression of GFP in one pair of olfactory neurons (ORNs) innervating the larval dome sensillum (Dorsal Organ) and one pair of neurons innervating the Terminal Organ that is associated with tastants (Figure 1A, Video S1) [28]

  • These larvae provide an ideal system for analyzing the functional advantage of restricting Or42a to one-olfactory receptor-per-neuron since they can be tested in a well-developed olfactory competitive-survival assay [27]

Read more

Summary

Introduction

The molecular and cellular organization of an olfactory system consists of several sensor types each expressing one member from a large odorant receptor family. Each sensory neuron type detects different subsets of odors, and connects in a specific receptor-toneuron-to-glomerulus manner. Despite vastly different receptor families and mechanisms of receptor regulation this highly restricted receptor expression pattern is highly conserved from invertebrates to vertebrates. This architecture provides a sophisticated spatial map of odor activation in the brain, which is thought to be important for detection and discrimination. The biological advantage of this highly conserved molecular organization has never been tested

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.