Abstract

We will elaborate the evolutionary course of an ecosystem consisting of a population in a chemostat environment with periodically fluctuating nutrient supply. The organisms that make up the population consist of structural biomass and energy storage compartments. In a constant chemostat environment a species without energy storage always out-competes a species with energy reserves. This hinders evolution of species with storage from those without storage. Using the adaptive dynamics approach for non-equilibrium ecological systems we will show that in a fluctuating environment there are multiple stable evolutionary singular strategies ( ss's): one for a species without, and one for a species with energy storage. The evolutionary end-point depends on the initial evolutionary state. We will formulate the invasion fitness in terms of Floquet multipliers for the oscillating non-autonomous system. Bifurcation theory is used to study points where due to evolutionary development by mutational steps, the long-term dynamics of the ecological system changes qualitatively. To that end, at the ecological time scale, the trait value at which invasion of a mutant into a resident population becomes possible can be calculated using numerical bifurcation analysis where the trait is used as the free parameter, because it is just a bifurcation point. In a constant environment there is a unique stable equilibrium for one species following the “competitive exclusion” principle. In contrast, due to the oscillatory dynamics on the ecological time scale two species may coexist. That is, non-equilibrium dynamics enhances biodiversity. However, we will show that this coexistence is not stable on the evolutionary time scale and always one single species survives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call