Abstract

Epidermal growth factor receptor (EGFR) blockade resistance is common in the treatment of RAS wide type colorectal cancer (CRC). During the treatment of cetuximab, acquired resistant genomic alterations always occurs earlier than disease progression observed by medical images. Identification of genomic alterations dynamically might have certain clinical significance. Because of the limitation of repeated tissue biopsy, liquid biopsy is increasingly recognized. Droplet digital polymerase chain reaction (ddPCR) is the main detection methods for circulating tumor DNA (ctDNA), however, the application of next-generation sequencing (NGS) for ctDNA detection becomes more and more popular. Here we develop a NGS-based ctDNA assay and evaluated its sensitivity and specificity while using ddPCR as control. These two technologies were both used for genomic alteration detection for the peripheral blood samples from cetuximab-treated colorectal cancer patients dynamically. Fifteen patients were enrolled in this study, including eight males and seven females. The sensitivity and specificity of our NGS assay were 87.5% and 100% respectively, and liner regression analysis comparing variant allele frequency (VAF) revealed high concordance between NGS and ddPCR (R2 = 0.98). NGS actually found more mutation information than ddPCR such as the additional dynamic changes of TP53 which were observed in the disease progression patients. Moreover, the variant allele fraction of TP53 was also found by NGS to be changed along with the clinical efficacy evaluation dynamically during the whole treatment process. In conclusion, our newly developed NGS-based ctDNA assay shows similar performance with ddPCR but have more advantages of its high throughput of multigenetic detection for the dynamic monitoring during the treatment of cetuximab in metastasis CRC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call