Abstract
The development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosic bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.
Highlights
The need for sustainable and renewable energy alternatives to replace fossil fuels has become a global issue that requires highly innovative research and development [1]
The field of activity-based protein profiling (ABPP) is poised to yield new insights into the enzymes responsible for biosynthetic and catabolic processes, as well as the regulatory mechanisms cells utilize for partitioning carbon and energy
To more fully realize the benefits of ABPP for bioenergy production, several challenges must be overcome. This includes the selection of important new probe targets, synthesis of novel probes which are capable of targeting and exploring new classes of enzymes and their poorly understood catalytic mechanisms, tight substrate specificity, and/or low expression levels in biofuels development
Summary
The need for sustainable and renewable energy alternatives to replace fossil fuels has become a global issue that requires highly innovative research and development [1]. Strategies to identify new organisms and enzymes with desired biofuel-relevant capabilities or alternatively, genetically modifying model organisms for optimized productivity, will require improved annotations and mechanistic insights into functional cellular processes, including transcriptional regulation, post-translational protein modifications and clues into regulatory networks [2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.