Abstract

Nanotechnology has significant economic, health, and environmental benefits, including renewable energy and innovative environmental solutions. Manufactured nanoparticles have been incorporated into new materials and products because of their novel or enhanced properties. These very same properties also have prompted concerns about the potential environmental and human health hazard and risk posed by the manufactured nanomaterials. Appropriate risk management responses require the development of models capable of predicting the environmental and human health effects of the nanomaterials. Development of predictive models has been hampered by a lack of information concerning the environmental fate, behavior and effects of manufactured nanoparticles. The United Kingdom (UK) Environmental Nanoscience Initiative and the United States (US) Environmental Protection Agency have developed an international research program to enhance the knowledgebase and develop risk-predicting models for manufactured nanoparticles. Here we report selected highlights of the program as it sought to maximize the complementary strengths of the transatlantic scientific communities by funding three integrated US-UK consortia to investigate the transformation of these nanoparticles in terrestrial, aquatic, and atmospheric environment. Research results demonstrate there is a functional relationship between the physicochemical properties of environmentally transformed nanomaterials and their effects and that this relationship is amenable to modeling. In addition, the joint transatlantic program has allowed the leveraging of additional funding, promoting transboundary scientific collaboration.

Highlights

  • Emerging results have indicated nanotechnology has the potential to impact industrial processes, create materials with superior properties, and improve the effectiveness of drug delivery

  • In 2006, in the United Kingdom (UK) a group of funding agencies led by the Natural Environment Research Council (NERC) established the Environmental Nanoscience Initiative (ENI)1, a research program on hazard, exposure and environmental risk posed by manufactured nanomaterials

  • The program issued a call for proposals and subsequently funded three large, interdisciplinary UK-United States (US) consortia; 1) Transatlantic Initiative for the Nanotechnology and the Environment (TINE), 2) Manufactured Nanomaterial Bioavailability & Environmental Exposure (NanoBee) and 3) Risk Assessment for Manufactured Nanoparticles Used in Consumer Products (RAMNUC)

Read more

Summary

Introduction

Emerging results have indicated nanotechnology has the potential to impact industrial processes (e.g., magnetic storage applications and catalysis), create materials with superior properties, and improve the effectiveness of drug delivery. Appropriate risk management responses require the development of models capable of predicting the environmental and human health effects of the nanomaterials. Development of predictive models has been hampered by a lack of information concerning the environmental fate, behavior and effects of manufactured nanoparticles.

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.