Abstract
Protein-Protein Interactions (PPIs) are essential to most biological processes and play a critical role in most cellular functions. With the development of high-throughput biological techniques and in silico methods, a large number of PPI data have been generated for various organisms, but many problems remain unsolved. These factors promoted the development of the in silico methods based on machine learning to predict PPIs. In this study, we propose a novel method by combining ensemble Rotation Forest (RF) classifier and Discrete Cosine Transform (DCT) algorithm to predict the interactions among proteins. Specifically, the protein amino acids sequence is transformed into Position-Specific Scoring Matrix (PSSM) containing biological evolution information, and then the feature vector is extracted to present protein evolutionary information using DCT algorithm; finally, the ensemble rotation forest model is used to predict whether a given protein pair is interacting or not. When performed on Yeast and H. pylori data sets, the proposed method achieved excellent results with an average accuracy of 98.54% and 88.27%. In addition, we achieved good prediction accuracy of 98.08%, 92.75%, 98.87% and 98.72% on independent data sets (C.elegans, E.coli, H.sapiens and M.musculus). In order to further evaluate the performance of our method, we compare it with the state-of-the-art Support Vector Machine (SVM) classifier and get good results. As a web server, the source code and Yeast data sets used in this article are freely available at http://202.119.201.126:8888/DCTRF/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.