Abstract
Background Pulse wave velocity (PWV) is a marker of arterial stiffness and local measurements could facilitate its widescale clinical use. However, confluence of incident and early reflected waves leads to biased spatiotemporal PWV estimates. Objective We introduce the Double Gaussian Propagation Model (DGPM) to measure local PWV in consideration of wave confluence (PWV[Formula: see text]) and compare it against conventional spatiotemporal PWV (PWV[Formula: see text]), with Bramwell-Hill PWV (PWV[Formula: see text]) and blood pressure (BP) as reference measures. Methods Ten subjects ranging from normotension to hypertension were repeatedly measured at rest and with induced PWV changes. Carotid distension waveforms over a 19 mm wide segment were acquired from ultrasonography, simultaneously with noninvasive continuous BP. Per cardiac cycle, the 8-parameter DGPM (amplitude, centroid, width, and velocity, respectively of forward and backward propagating wave) was fitted to the distension waveforms' systolic foot and dicrotic notch complexes. Corresponding PWV[Formula: see text] was computed from linear fittings of respective feature timings and distances. Regression analyses were conducted with PWV[Formula: see text] and PWV[Formula: see text] as predictors, and various PWV and BP measures as response variables. Results Whereas PWV[Formula: see text] correlations were insignificant, PWV[Formula: see text] estimated the reference PWV[Formula: see text] with a significant reduction in errors (P < 0.001), explained up to 65% PWV[Formula: see text] variability at rest, demonstrated higher intra-method consistency and correlated significantly with all BP measures (P < 0.001). Conclusion The proposed DGPM measures local carotid PWV in consideration of wave confluence, showing significant correlations with Bramwell-Hill PWV and BP at two distinct waveform complexes. Thereby PWV[Formula: see text] outperforms the conventional PWV[Formula: see text] in all investigated respects, potentially enabling PWV assessment in routine clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.