Abstract

This study addresses the challenges associated with incomplete or missing information in obstacle detection methods that employ a single sensor. Additionally, it tackles the issue of motion distortion in LiDAR point cloud data during synchronization and mapping in complex environments. The research introduces two significant contributions. Firstly, a novel obstacle detection method, named the point-map fusion (PMF) algorithm, was proposed. This method integrates point cloud data from the LiDAR, camera, and odometer, along with local grid maps. The PMF algorithm consists of two components: the point-fusion (PF) algorithm, which combines LiDAR point cloud data and camera laser-like point cloud data through a point cloud library (PCL) format conversion and concatenation, and selects the most proximate point cloud to the quadruped robot dog as the valid data; and the map-fusion (MF) algorithm, which incorporates local grid maps acquired using the Gmapping and OctoMap algorithms, leveraging Bayesian estimation theory. The local grid maps obtained by the Gmapping and OctoMap algorithms are denoted as map A and map B, respectively. This sophisticated methodology enables seamless map fusion, which significantly enhances the precision and reliability of the approach. Secondly, a motion distortion removal (MDR) method for LiDAR point cloud data based on odometer readings was proposed. The MDR method utilizes legged odometer data for linear data interpolation of the original distorted LiDAR point cloud data, facilitating the determination of the corresponding pose of the quadruped robot dog. Subsequently, the LiDAR point cloud data are then transformed to the quadruped robot dog coordinate system, efficiently mitigating motion distortion. Experimental results demonstrated that the proposed PMF algorithm achieved a 50% improvement in success rate compared to using only LiDAR or the PF algorithm in isolation, while the MDR algorithm enhanced mapping accuracy by 45.9% when motion distortion was taken into account. The effectiveness of the proposed methods was confirmed through rigorous experimentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.