Abstract

<h2>Summary</h2> Molecular catalysts possess numerous advantages over conventional heterogeneous catalysts in precise structure regulation, in-depth mechanism understanding, and efficient metal utilization. Various molecular catalysts have been reported that efficiently catalyze reactions involved in artificial photosynthesis, however, these catalysts have been rarely considered in view of practical applications. With this review, firstly we demonstrate in the introduction that molecular catalysts can bring new opportunities to proton exchange membrane (PEM) electrolyzers. In the following parts, we provide an overview of molecular catalyst modified carbon materials developed for electrochemical water oxidation, proton reduction, and CO<sub>2</sub> reduction reactions. These materials and the involved immobilization strategies as well as characterization techniques may be directly employed in the investigations of application of molecular catalysts in PEM electrolyzers. The future scientific perspectives and challenges to advance this promising, yet underdeveloped technology for solar fuel production, integrating PEM electrolyzer with molecular-level catalysis, are discussed in the conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.