Abstract
Diagnostic strategies for endometrial cancer have been evolving, with cytologic analysis being considered a key method in integrated oncologic diagnostics because of its less invasive nature and adaptability to various assessments. Liquid-based cytology (LBC) has emerged as a promising method for intact DNA preservation; it exhibits improved efficiency in advanced sequencing applications such as next-generation sequencing. However, despite the use of LBC in panel assays, its application in whole-exome sequencing (WES) for comprehensive genomic profiling remains underexplored. To investigate whether molecular classification is possible based on WES using DNA derived from LBC specimens. We combined WES with targeted gene panel analysis to compare genomic findings of LBC and traditional tissue samples obtained from 7 cases of endometrial cancer. We investigated pathogenic mutations, tumor mutational burden, and microsatellite instability, and achieved molecular classification with high accuracy. We found a substantial concordance between LBC and traditional tissue samples in terms of pathogenic mutation detection, with a 95% match in the LBC samples and 94% in the tissue samples. Notably, our results highlight the importance of combining WES with panel-based analysis in identifying the ultramutated status of a case that had been missed during panel analysis. Our findings emphasize the potential of LBC samples in the precise and noninvasive genomic analysis of cases of endometrial cancer and offer a new avenue for developing diagnostic and therapeutic strategies in precision oncology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.